

Structures of LuFeCoO_4 and LuFe_2O_4

BY M. ISOBE, N. KIMIZUKA, J. IIDA AND S. TAKEKAWA

National Institute for Research in Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, Japan

(Received 8 March 1990; accepted 11 April 1990)

Abstract. Common to both: trigonal, $R\bar{3}m$, $Z = 3$, $T = 295$ K, $\text{Mo } K\alpha$, $\lambda = 0.71073$ Å. Cobalt iron lutetium tetraoxide, LuFeCoO_4 : $M_r = 353.74$, $a = 3.4180$ (1), $c = 25.28$ (1) Å, $V = 255.8$ (1) Å 3 , $D_x = 6.89$ Mg m $^{-3}$, $\mu = 37.64$ mm $^{-1}$, $F(000) = 468$, $R = 0.016$, 497 unique observed reflections. Diiron lutetium tetraoxide, LuFe_2O_4 : $M_r = 350.66$, $a = 3.4406$ (1), $c = 25.28$ (1) Å, $V = 259.2$ (1) Å 3 , $D_x = 6.74$ Mg m $^{-3}$, $\mu = 36.56$ mm $^{-1}$, $F(000) = 465$, $R = 0.029$, 480 unique observed reflections. These structures are of the In_2ZnS_4 type and described as a close packing of O atoms with Lu atoms in octahedral and other metal atoms in trigonal bipyramidal coordination. The thermal parameters U_{33} of Lu atoms are abnormally large.

Experimental. The crystals were prepared from large black crystals grown by Iida, Takekawa & Kimizuka (1990). Intensity data were collected on an Enraf-Nonius CAD-4 single-crystal diffractometer with graphite-monochromated Mo $K\alpha$ radiation in $\omega-2\theta$ scan mode. Experimental conditions are summarized in Table 1. The intensities were corrected for Lorentz, polarization and absorption factors. The structures were refined on F by least squares by assuming isotropic secondary extinction. The calculation was initiated with the atomic parameters of YbFe_2O_4 given by Kato, Kawada, Kimizuka & Katsura (1975). Unit weight was given to all the observed reflections. The atomic scattering factors for neutral atoms and dispersion correction factors were taken from *International Tables for X-ray Crystallography* (1974). The final atomic parameters are given in Table 2.* Selected bond distances and angles are listed in Table 3 together with their estimated standard deviations. All of the calculations were performed with program system *SDP* (B. A. Frenz & Associates, Inc., 1985).

Related literature. The structures of the title compounds are essentially of the In_2ZnS_4 type (Lappe,

Niggli, Nitsche & White, 1962). They are isostructural with YbFe_2O_4 (Kato *et al.*, 1975) and $\text{Y}_{0.5}\text{Eu}_{0.5}\text{Fe}_2\text{O}_4$ (Malaman, Evrard, Tannieres, Aubry, Courtous & Protas, 1975). Kimizuka, Mohri, Matsui & Shiratori (1988) and Kimizuka & Mohri (1989) identified several new compounds of $RA\text{O}_3(MO)_n$ ($R = \text{Sc}, \text{Y}, \text{In}, \text{Er}, \text{Tm}, \text{Yb}, \text{Lu}$; $A = \text{Al}, \text{Fe}, \text{Ga}$; $M = \text{Mg}, \text{Mn}, \text{Fe}, \text{Co}, \text{Zn}, \text{Cd}$), and estimated the crystal structures through both X-ray powder diffraction and electron diffraction analysis.

Table 1. *Experimental data*

	LuFeCoO_4	LuFe_2O_4
Crystal shape and diameter (mm)	Sphere 0.120	Sphere 0.120
Number and θ (°) range for lattice parameters	18 41-46	18 41-46
Transmission factors	0.054-0.132	0.059-0.137
θ_{\max} (°)	60	60
Range of $h (=k)$	0-7 0-60	0-7 0-60
l	3 -0.3	3 -0.6
Number and variation (%) of standard reflections	555	564
Measured reflections	497	480
Observed reflections [$I > 1.5\sigma(I)$]	0.016	0.029
R	0.019	0.031
wR	1.3	2.0
S	0.01	0.01
$(\Delta/\sigma)_{\max}$	-1.8, 2.8	-8.6, 8.1
Min. and max. $\Delta\rho$ (e Å $^{-3}$)	8.3 (1)	9.6 (1)
Extinction factor ($\times 10^6$)		

Table 2. *Atomic parameters and thermal parameters (Å 2)*

$$x = y = 0, U_{11} = U_{22} = 2U_{12}, U_{13} = U_{23} = 0, B_{\text{eq}} = (8\pi^2/3)\sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

		LuFeCoO_4	LuFe_2O_4
Lu	z	0	0
	U_{11}	0.0037 (1)	0.0041 (1)
	U_{33}	0.0235 (1)	0.0432 (2)
Fe/Co	B_{eq}	0.81 (1)	1.35 (1)
	z	0.21485 (2)	0.21518 (3)
	U_{11}	0.0072 (1)	0.0100 (1)
O(1)	U_{33}	0.0074 (1)	0.0090 (2)
	B_{eq}	0.57 (1)	0.76 (1)
	z	0.1284 (1)	0.1281 (3)
O(2)	U_{11}	0.012 (1)	0.019 (1)
	U_{33}	0.017 (1)	0.047 (4)
	B_{eq}	1.1 (1)	2.3 (1)
	z	0.2923 (1)	0.2926 (2)
	U_{11}	0.009 (1)	0.013 (1)
	U_{33}	0.008 (1)	0.008 (1)
	B_{eq}	0.7 (1)	0.9 (1)

* A list of structure factors has been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53010 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 3. Bond lengths (Å) and angles (°)

	LuFeCoO ₄	LuFe ₂ O ₄
Lu—O(2) ¹ (6 ×)	2.230 (1)	2.237 (2)
Lu—O(1) (2 ×)	3.247 (3)	3.240 (8)
O(2) ¹ —O(2) ¹ (6 ×)	3.418 (1)	3.441 (1)
O(2) ¹ —O(2) ¹ (6 ×)	2.865 (3)	2.861 (4)
O(2) ¹ —Lu—O(2) ¹ (6 ×)	100.1 (1)	100.5 (1)
O(2) ¹ —Lu—O(2) ¹ (6 ×)	79.9 (1)	79.5 (1)
Fe/Co—O(1) ¹ (3 ×)	1.989 (1)	2.002 (1)
Fe/Co—O(2)	1.957 (2)	1.957 (4)
Fe/Co—O(1)	2.185 (3)	2.200 (8)
O(1) ¹ —O(1) ¹ (3 ×)	3.418 (1)	3.441 (1)
O(2)—O(1) ¹ (3 ×)	2.962 (3)	2.972 (6)
O(1)—O(1) ¹ (3 ×)	2.763 (3)	2.782 (8)
O(1) ¹ —Fe/Co—O(1) ¹ (3 ×)	118.4 (1)	118.4 (1)
O(2)—Fe/Co—O(1) ¹ (3 ×)	97.3 (1)	97.3 (2)
O(1)—Fe/Co—O(1) ¹ (3 ×)	82.7 (1)	82.8 (2)

Symmetry code: (i) $\frac{2}{3}, \frac{1}{3}, \frac{1}{3} - z$; (ii) $-\frac{1}{3}, \frac{1}{3}, \frac{1}{3} - z$; (iii) $\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3} + z$.

Acta Cryst. (1990). C46, 1918–1920

References

B. A. FRENZ & ASSOCIATES, INC. (1985). *SDP Structure Determination Package*, 4th ed. College Station, Texas, USA.
 IIDA, J., TAKEKAWA, S. & KIMIZUKA, N. (1990). *J. Cryst. Growth*. In the press.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
 KATO, K., KAWADA, I., KIMIZUKA, N. & KATSURA, T. (1975). *Z. Kristallogr.* **141**, 314–320.
 KIMIZUKA, N. & MOHRI, T. (1989). *J. Solid State Chem.* **78**, 98–107.
 KIMIZUKA, N., MOHRI, T., MATSUI, Y. & SIRATORI, K. (1988). *J. Solid State Chem.* **74**, 98–109.
 LAPPE, F., NIGGLI, A., NITSCHE, R. & WHITE, J. G. (1962). *Z. Kristallogr.* **117**, 146–152.
 MALAMAN, B., EVRARD, O., TANNIERES, N., AUBRY, J., COURTOIS, A. & PROTAS, J. (1975). *Acta Cryst.* **B31**, 1310–1312.

Structure of [10-(2-Aminophenyl)-5-methyl-1,5,9-triaza-9-decene-*N,N',N'',N'''*]iodocupper(II) Iodide

BY ANDRZEJ WOJTCZAK*

Department of Mineralogy and Crystallography, Institute of Chemistry, N. Copernicus University,
Gagarina 7, 87-100 Toruń, Poland

MARIUSZ JASKÓLSKI

Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6,
60-780 Poznań, Poland

AND TADEUSZ OSSOWSKI

Institute of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland

(Received 27 June 1989; accepted 30 January 1990)

Abstract. [CuI(C₁₄H₂₄N₄)]I, $M_r = 565.73$, monoclinic, $P2_1/c$, $a = 9.277 (1)$, $b = 18.200 (4)$, $c = 11.749 (1)$ Å, $\beta = 92.925 (8)^\circ$, $V = 1981.1 (5)$ Å³, $Z = 4$, $D_m = 1.91 (1)$, $D_x = 1.897$ Mg m⁻³, $\lambda(Mo K\alpha) = 0.71069$ Å, $\mu = 4.19$ mm⁻¹, $F(000) = 1084$, room temperature, $R = 0.0349$ for 2625 reflections. The Cu²⁺ coordination sphere has a distorted square-pyramidal geometry with four equatorial Cu—N bonds varying from 2.016 (5) to 2.064 (5) Å and an axial Cu—I bond of 2.788 (1) Å. The N atom displacements from the N₄ best plane vary from $-0.019 (5)$ to $0.019 (5)$ Å and the angle between the

Cu—I bond and the N₄ plane is 85.1° . The second iodide which is 5.88 Å from Cu²⁺ acts as a counterion in the structure. The three chelate ring conformations can be described as half chair, distorted chair and distorted chair. Both amino groups form hydrogen bonds with the iodide ions.

Experimental. Crystals were from methanol–water solution, density by flotation. Data collected for $0.5 \times 0.35 \times 0.45$ mm crystal on a Syntex $P2_1$ diffractometer, 15 reflections $17 < 2\theta < 25^\circ$ were used to obtain lattice parameters, 3333 unique reflections were measured up to $2\theta = 50^\circ$ ($h: \pm 11$, $k: 0-21$, $l: 0-13$) using graphite-monochromated Mo $K\alpha$ radiation, $\lambda = 0.71069$ Å, profile analysis according to Lehmann & Larsen (1974). Two standards (054 and

* To whom correspondence should be addressed. Current address: Medical Foundation of Buffalo, Inc., 73 High St, Buffalo, NY 14203, USA.